

Towards Advancing Theorization of Knowledge Exchange Processes: Unpacking Linkages and Sequences among Concepts via Tacit-Explicit Knowledge Conversion Notion

Yanyan Huang¹, Obakeng A. Sethamo^{1,3}, Benita C. Odii^{1,4,5}, Marie K. Harder^{1,2 *}

¹ Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Rd., Shanghai, 200438, People's Republic of China

² Values and Sustainability Research Group, University of Brighton, Lewes Road, East Sussex, BN2 4GJ, UK

³ Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL), SADC, Windhoek, Namibia

⁴ Department of Linguistics, Igbo and Other Nigerian Languages, University of Nigeria, Nsukka, Enugu, Nigeria

⁵ Organization of African Academic Doctors (OAAD), Langata, P.O. Box 1483300100, Nairobi, Kenya.

* Corresponding address: Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Rd., Shanghai, 200438, People's Republic of China. m.k.harder@brighton.ac.uk

Abstract

Knowledge Exchange (KE) bridges the gap between science and practice. Situated in the context of Knowledge Management for Development, this study proposes a theoretical advance in understanding KE processes by leveraging on the notion of tacit-explicit knowledge conversion, and the SECI model. Using a case concerning climate change adaptation planning in Botswana, it examines how KE processes combine and sequence to drive effective engagement in an empirical setting. Results reveal a partial SECI spiral of Externalization, Combination, and Internalization modes, with these modes offering insights for understanding and interrogating the combination and sequencing of the KE process concepts. We identified a horizontal (chronological) linkage including knowledge integration, and practice and learning, which provided insights into how the process-related concepts are sequenced. This was found to be built on what we termed a 'Knowledge Foundation' comprising linked concepts of trust, information usability, boundary objects, and research capacity (from knowledge broker to campaigner). Together, they comprise a proposed framework by which key KE process-related concepts can be organized, demonstrating how the KE process-related concepts combine and sequence over time. These findings suggest that the perspective of knowledge as dynamic, coupled with the consideration of the notion of tacit-explicit knowledge conversion, is invaluable for understanding, and ultimately driving, effective knowledge exchange. The study thus advances KE theory, and calls for future exploratory works to consider other interfaces, levels of governance, and context-transcendence of the findings.

Keywords: science-practice interface; tacit-explicit knowledge conversion; knowledge exchange; shared values; SECI model; theory building

1. Introduction

Knowledge Exchange (KE) is increasingly recognized as a critical mechanism for bridging the gap between science and practice in sustainability science. Transdisciplinary collaborations—spanning policy making, research, and on-the-ground action—rely on KE to integrate diverse forms of knowledge to address multifaceted environmental and social challenges (Cvitanovic et al., 2016; McGill et al., 2023). Over decades of scientific inquiry and applied practice (Knapp et al., 2019), KE has been conceptualized as a comprehensive process that includes knowledge production, sharing, storage, mobilization, integration, and translation (Fazey et al., 2013). Yet, despite its central role, theoretical development in KE has lagged behind empirical advances, limiting the systemic

46 understanding of its dynamic, multifaceted, and complex nature (Fazey et al., 2014).

47 The evolution of KE research has been marked by a concerted effort to identify key concepts, referred
48 as ‘enablers’—such as trust, information usability, social learning, and boundary objects—as well as
49 ‘barriers’ like the challenges in effectively translating scientific knowledge into practice (Fazey et al.,
50 2013; Westwood et al., 2023; Karcher et al., 2024). These studies typically treat KE elements as
51 isolated, static factors rather than as parts of a dynamic, interrelated process. However, reviews by
52 Fazey et al. (2013, 2014) and Reed et al. (2014) have underscored the urgent need for theoretical
53 elaboration that can move beyond a mere catalog of concepts. Regardless of theory type (e.g.
54 descriptive, prescriptive, predictive, practice), components of a theory should include purpose and
55 boundaries, concepts, relationships – and then go forward towards representations, predictive
56 statements, prescriptive statements, philosophy and methodology, quality, related research (Svejvig,
57 2021). Such theoretical components have not yet been fully developed here.

58 Therefore, this oversight leaves a significant gap in our understanding: while knowing which concepts
59 matter, we remain unclear about how these concepts combine and sequence over time to drive effective
60 KE outcomes (Reed et al., 2014; Eisenhardt & Graebner, 2007). Besides, current process-driven
61 frameworks are primarily practice-centered. While having provided guidance for implementation, they
62 are lacking the concept-driven insights needed to delineate the relationships among key concepts
63 (Cvitanovic et al., 2015a; Nguyen et al., 2017; Roux et al., 2019; Zhang et al., 2022). To fill this
64 theoretical gap, we need an approach that not only identifies what matters in KE, but also rigorously
65 delineates how these mattered concepts are interdependent and temporally structured.

66 Before a selection of approach to fill the recognized gap, recognizing the need for precision and
67 transferability, we deliberately confine the scope of this study to the process dimension of KE. We
68 exclusively analyze process-related concepts, excluding broader institutional concepts such as power
69 dynamics and funding opportunities to capture the dynamic conversion of knowledge that is most
70 clearly manifested within the KE process itself. This targeted scope not only simplifies the complexity
71 inherent in KE but also aligns with the core tenet of dynamic knowledge, wherein iterative interactions
72 among knowledge producers and users drive more salient and legitimate problem-driven outcomes
73 (Evely et al., 2011; Phillipson et al., 2012; Reed et al., 2014).

74 Our selection of theoretical lens is guided by the overarching conceptual framework of Knowledge
75 Management for Development (KM4D) and Knowledge Management for Sustainable Development
76 (KM4SD) (Boyes et al., 2023). KM4D originated in the late 1990s when organizations such as World
77 Bank began positioning knowledge as a central development asset, embedding knowledge-sharing and
78 organizational learning into development practice (World Bank, 1998). It fundamentally diverges from
79 traditional KM (e.g., focused on competitive advantage and corporate efficiency, Davenport and
80 Prusak, 1998) by shifting its ultimate goal to social relevance and the achievement of Sustainable
81 Development Goals (SDGs). It also explicitly recognizes and prioritizes the integration of multiple
82 knowledge (encompassing local, tacit, experiential, community, and indigenous knowledge) viewing
83 this knowledge as a vital, yet often marginalized, asset in development (Brown, 2010). KM4D rejects
84 the notion that scientific knowledge alone is sufficient, advocating instead for the decolonization of
85 knowledge by elevating local wisdom (Boyes et al., 2023). Crucially, for contexts across the Global
86 South, KM4D provides the essential theoretical foundation for analyzing how local communities can
87 harness their unique knowledge assets to drive resilience and adaptation and emphasizes that successful
88 knowledge integration in development is achieved not through top-down mandates, but through the
89 facilitation of dynamic community-level processes and integration of local knowledge into learning
90 systems by which ownership and control (by knowledge holders) are ensured (Boyes et al., 2023,
91 Cummings et al., 2025).

92 This pronounced focus on dynamic, decentralized knowledge conversion and the imperative to
93 integrate local tacit knowledge precisely points us to a pathway to address the identified theoretical gap
94 in KE: our study leverages the notion of tacit–explicit knowledge conversion as originally articulated in
95 Polanyi’s Personal Knowledge Theory (Polanyi, 1962) and later conceptualized in Nonaka’s
96 Knowledge Creation Theory (Nonaka, 1994; Nonaka & Takeuchi, 1995). Central to our approach is
97 Nonaka’s SECI model which builds on those, and which delineates the continuous transformation of
98 tacit into explicit knowledge (and vice versa) via socialization, externalization, combination, and

99 internalization.

100 By situating the SECI model within the KM4D framework, we argue that the model is transformed
101 from a corporate learning mechanism into the most suitable micro-process mechanism for analyzing
102 the critical knowledge conversion tasks demanded by sustainability science. The KM4D mandate gives
103 SECI new purpose: to rigorously delineate how local, often tacit, indigenous values knowledge (the
104 core asset acknowledged by KM4D) is converted into actionable, shared explicit knowledge for
105 community-level sustainability (in this study, climate adaptation planning). This dynamic model, rooted
106 in organizational studies of knowledge management (Roux et al., 2006; Stern et al., 2020), offers a
107 powerful lens to examine the interplay among KE process-related concepts. By applying this model,
108 we aim to uncover the dynamic interplay among KE process-related concepts over time rather than
109 merely listing them. In turn, we assess the usefulness of SECI model and the Knowledge Creation
110 Theory to shed light on the question of “Which academic theories or models are useful for what kinds
111 of practice of KE?” (Fazey et al., 2013, 2014; Reed et al., 2014).

112 While theoretical models provide conceptual clarity, the lack of pragmatic significance in direct
113 theoretical mappings can limit their relevance for KE research. This is particularly crucial in KE, where
114 real-world complexity, uncertainty, and context dependency make purely theoretical insights
115 insufficient. To mitigate this gap, we employ an empirical case study as a proof-of-concept to illustrate
116 the utility of applying the tacit–explicit knowledge conversion notion to map the KE process, serving
117 as an intermediary between theoretical constructs and practical realities. By embedding theoretical
118 concepts in an empirical KE process, we integrate both empirical insights and theoretical elaboration,
119 reinforcing the applicability of the theory in real-world sustainability challenges. Our approach aligns
120 with two ‘ideal types’ of theorizing in sustainability science (Schlüter et al., 2022): (1) theorizing in
121 embedded research, where empirical data drives conceptual refinement, and (2) basic research-driven
122 theorizing, where existing theory is used as a foundation to interpret empirical findings. By doing so,
123 we enhance both theoretical depth and practical applicability, ensuring our insights are relevant beyond
124 the specific case.

125 Specifically, we examine the KE process between a researcher and local Village Development
126 Committee members in Botswana, Africa, within the context of climate change adaptation planning.
127 Acknowledging KE process can be promoted and studied on multiple governance levels with multiple
128 interfaces and types of knowledge involved (Karcher et al., 2024), we refine our research scope
129 according to this empirical setting, where knowledge is understood as the interplay between perceived
130 local knowledge and scientific knowledge aimed at producing more legitimate and actionable outputs
131 (Raymond et al., 2010; Young, Corriveau, et al., 2016a). By restricting our focus to process-related
132 concepts, we ensure a clear and precise investigation into the dynamics of knowledge conversion.

133 In sum, we aim to advance KE theory in this study through a qualitative exploration making use of
134 empirical data. We identify a specific combination of KE process-related concepts and reveal a distinct
135 sequence in which these combinations occur empirically. Together, these comprise a new ‘framework’
136 by which key KE process-related concepts can be organized. In addition, we demonstrate the utility of
137 the tacit–explicit knowledge conversion perspective, operationalized through the SECI model, as a
138 means to understand the dynamic interrelationships among concepts involved in KE process. In this
139 way, we provide both substantive and methodological stepping stones for KE theory building.

140 Through these contributions, our study not only addresses a critical gap in the existing literature but
141 also provides a pivotal stepping stone toward more integrated and actionable approaches for designing
142 and optimizing KE processes in sustainability science. Although a single-case study does not allow
143 broad generalization, it serves as an analytical generalization (Yin, 2018) by illustrating how theoretical
144 relationships manifest in practice. We demonstrate the functional application of the SECI model in KE
145 and validate its conceptual utility. Thus, while the empirical findings are limited to the specific setting,
146 the theoretical contribution extends beyond the case, offering a foundation for future research aimed at
147 generalizing these dynamics and refining KE theory to enhance the design and implementation of more
148 effective KE interventions in sustainability science.

149 We organize the paper as follows. We first review and identify common KE process-related concepts
150 and introduce the selected theory of KCT and its SECI model. We then provide the multi-case-study

151 background and the data collection and analysis methods; report our findings on linkages among the
152 key KE process-related concepts; and discuss the usefulness of SECI model for KE theory building
153 before concluding with future research suggestions.

154

155 **2. Theoretical Foundation**

156 **2.1. The notion of tacit-explicit knowledge conversion and its adaptation in KE research**

157 Knowledge Exchange (KE) is an inherently social process. It has feedback-learning loops and a non-
158 linear process that goes beyond generating and communicating new knowledge and acting upon it; it
159 extends to the provision of reliable and relevant knowledge to decision-makers and academics (Reed et
160 al., 2014). KE is a two- or multi-directional interactive approach to engaging, producing, sharing, co-
161 creating, co-managing, learning, and brokering knowledge in relevant contexts, for defined purposes
162 and participants, through various methods (Nguyen et al., 2021; Cvitanovic et al., 2025; Fazey et al.,
163 2013; Reed et al., 2014). It is multi-dimensional because it involves diverse participants such as the
164 local communities, researchers, practitioners, policymakers and organizations (Mrazek and Haggerty
165 1994), multiple channels such as face-to-face communications, written documents, seminars,
166 collaborative projects, online platform and workshops, knowledge heterogeneity (Raymond et al.,
167 2010), context dependency, diverse exchange directions (Lepore et al., 2021), involving multiple stages
168 such as knowledge generation, dissemination, reception, application and feedback, and diverse impacts.

169 KE is founded on the assumption that knowledge and knowledge exchange processes are dynamic
170 (Fazey et al., 2013; Reed et al., 2014; Nguyen et al., 2021). Dynamics within/of the KE processes is
171 characterized by varying interpretations and uncertainties regarding its effectiveness across different
172 contexts (Fazey et al., 2013). The flexible nature of KE processes emphasizes the need for continued
173 monitoring, reflection, and refinement (Reed et al., 2014), with adaptive mechanisms that synthesize an
174 array of knowledge types from diverse sources (Ward et al., 2012). In a study on environmental
175 governance within China's NEP, Kong et al. (2023) position KE as a vital and dynamic component that
176 underscores its adaptability to shifting circumstances and the involvement of multiple stakeholders
177 with varied backgrounds. In another study, Cvitanovic et al. (2021) stress that trust, a key element in
178 KE, is inherently dynamic and fragile, necessitating persistent efforts to establish and sustain it, thereby
179 reinforcing the ever-changing essence of KE processes.

180 The dynamic perspective of knowledge within KE is crucial because historically, knowledge was
181 viewed as a static entity. However, knowledge is also perceived as a dynamic process linked to an
182 individual's perceptions and worldview, is context-specific and evolving (Evely et al., 2011). More so,
183 the dynamics of knowledge within KE is hinged on the fact that the knowledge shared is constantly
184 updated and refined through interactions among different stakeholders in different contexts (Tschorhart
185 et al., 2016).

186 Despite the emphasis on multi-directionality and inclusivity in KE, it is widely acknowledged that not
187 all forms of knowledge are equally accessible or translatable. Dismore et al. (2024) observe that some
188 forms of knowledge could be exchanged because they are codified-explicit knowledge-whereas others
189 are contextual, personal, dependent, and are more challenging to exchange- tacit knowledge. In
190 Knowledge Management literature, tacit knowledge is often linked to local knowledge which Li and
191 Zhao (2023) refer to as localness. Tacit knowledge is viewed as such because it embodies the common
192 practices and strategies of the local people in dealing with uncertainties (Rantanen and Kahila, 2009).
193 Local knowledge, which we focus on in this study, could either be tacit or explicit (Raymond et al.,
194 2010); if tacit, it is rooted in personal experience, context, and intuition (Polanyi 1962) and perceived
195 as hard to communicate or share with others (Nonaka and Takeuchi, 1995). For tacit knowledge to be
196 communicated, it must be converted into words, models, or numbers that can be commonly understood
197 by others (Desouza, 2003). It can be learned and exchanged through participation and by 'doing'
198 (Nonaka 1991; Holste and Fields 2010) and relies on local trust (Foos et al., 2006). Because of how
199 hard it is to access, interpret and communicate the tacit local knowledge of the local people to the
200 researchers, policy makers or a third party, knowledge brokers who have access to the tacit and explicit
201 local knowledge usually summarize it into a medium that other actors can use (Reed et al., 2014).

202 KE facilitates the reciprocal exchange of knowledge between knowledge producers and users of all
203 aspects and recognizes that each of the parties contributes important knowledge during the interaction
204 (Bautista et al., 2017; Cvitanovic, et al., 2021). It enables the integration or synthesis of diverse forms
205 of knowledge (Ward et al., 2012), recognizing the need to engage with a range of groups to decide and
206 achieve desired outcomes (Cash et al., 2003; Aswani and Hamilton, 2004; Pretty, 2011). This
207 knowledge includes experiential or local, scientific and hybrid (Raymond et al., 2010), practice,
208 horizontal and vertical (Tschorhart et al., 2016), and producer and user knowledge (Bautista et al.,
209 2017). Local knowledge in environmental management is further divided into 11 types: indigenous,
210 traditional ecological, local ecological, personal, lay, situated, tacit, implicit, informal, non-
211 expert/novice and expert (Raymond et al., 2010). These well-defined types of knowledge are to be
212 exchanged among each other or with scientific knowledge. In this study, the nature of the local
213 knowledge being considered is personal and tacit. A person or group holds this knowledge, derived
214 from their experiences and tied to their worldview, values, and expertise (Raymond et al., 2010).

215 Similar findings have been reported from other fields. In public health communication and decision-
216 making, Sanford et al. (2020) emphasize the importance of tacit knowledge in managing Emerging
217 Public Health Incidents (EPHIs). They found that local knowledge and clinician feedback in Ontario
218 have not been adequately engaged. Participants drew on their prior experiences and field observations
219 to address EPHIs and established strong relationships that promoted tacit knowledge learning, trust,
220 and credibility. Rist et al.'s (2016) study showed local residents' knowledge aided forest management
221 and built mutual understanding. Bliss et al. (2019) found that tacit knowledge of farmers' practices is
222 hard to formalize, but collaboration, like workshops, exchange visits that can facilitate the observation
223 of contextual practice, and videos can bridge knowledge gaps among farmers, researchers and advisors.
224 In Habiayaremye (2023), university-community engagement projects facilitated co-learning and
225 knowledge co-creation between South African researchers from the University of Johannesburg and
226 local Soweto communities. This led to the merging of local tacit knowledge with the researchers'
227 scientific insights, co-producing knowledge to improve and sustain Soweto's local food systems. In
228 conservation planning, local hunters, loggers, farmers, and researchers in eastern Canada's Chignecto
229 Isthmus engaged in participatory mapping, interviews, and workshops. Locals offered valuable data on
230 wildlife and habitat issues linked to human activities (Needham et al., 2020).

231 These studies reveal that local knowledge is tacit, contextual, and individual, often shared through
232 social interactions and trust-building. These characteristics align with the dynamics of knowledge in
233 KE. The tacit nature of local knowledge can enhance KE, bridge the gap between research and practice,
234 promote the co-creation and integration of different knowledge, and strengthen the sustainability of
235 KE. Thus, this study suggests incorporating tacit knowledge and the notion of tacit-explicit knowledge
236 conversion into KE literature because of their potential and underrepresentation. Although, the
237 increasing attention to participatory and co-productive processes, little research systematically
238 incorporates T-E conversion into the KE literature, even though the literature extensively uses related
239 terms such as sharing, transfer, brokerage, transformation, and translation (Fazey et al., 2013; Ward et
240 al., 2009; Best & Holmes, 2010).

241 While KE approaches and frameworks have evolved—through boundary organizations, co-production,
242 knowledge brokering, and trust-building (Bednarek et al., 2018; Fazey et al., 2014; Walsh et al., 2019;
243 Karcher et al., 2024) - a critical conceptual and practical gap persists. Few KE frameworks explicitly
244 incorporate mechanisms to address the dynamic conversion between tacit and explicit knowledge
245 forms. Bogatinoska et al. (2024) and Stern et al. (2020) are among the few that reference the SECI
246 model to enhance KE, especially in environmental contexts. These studies found that concepts such as
247 lack of common language, professional background, and organizational cultures hinder effective KE,
248 while social learning and trust are foundational to facilitating tacit-explicit conversion. Furthermore,
249 Cvitanovic et al. (2018; 2021) identify seven categories of core capacities for KE, yet these capacities
250 are rarely aligned with the nuanced conceptual mechanisms necessary for effective T-E conversion.

251 With these process concepts scattered in different KE works, KE remains under-theorized in the way its
252 process concepts have not been organized into a useful dynamic process theory that applies to different
253 KE contexts and in the way it has overlooked the intrinsic challenges of tacit knowledge and the notion
254 tacit-explicit knowledge conversion for advancing KE effectiveness.

255 **2.2. Key KE concepts associated with the process condition**

256 A wide variety of KE concepts have been identified in current literature. Given the scope of this study
257 which is the KE process between science and practice interfaces on the local level, we only consider
258 process condition concepts. There is no systematic review matching our scope, but reviews of KE from
259 wider scopes or different aspects can provide insights.

260 The first systematic review regarding KE on science-policy interface for forest science (Westwood et
261 al., 2023) indicated common key enablers for KE were trust, funding, and established relationships;
262 and major barriers were translation of science, and lack of time. Building on Cvitanovic et al. (2015a),
263 the latest review on KE progress by Karcher et al. (2024) particularly emphasized “the need to better
264 understand enabling factors to effective KE” in a comprehensive manner. They reported key concepts
265 of KE from ten dimensions (process, interpersonal, individual, financial, group, resource &
266 information, institutional, focus, timing and public pressure) and 28 concepts (referred as ‘enablers’ in
267 the reference). Those within our research scope and context were: process, interpersonal, individual,
268 resource & information, and we looked therein to locate concepts for our theory-building.

269 Drawing on previous reviews and related literature concerning **process-related concepts** (e.g.
270 Cvitanovic et al., 2015b; Cvitanovic et al., 2016; Cvitanovic et al., 2021; Fazey et al., 2013; Nguyen et
271 al., 2019; Walsh et al., 2019), we identified all relevant concepts, while remaining open to new
272 concepts that may emerge during the analysis. Because of the declared exploratory nature of our study
273 we did not require nor conduct a systematic literature review but built on our understanding and
274 accumulation of previous literature. We acknowledge this limitation and advocate future systematic
275 review work building on our exploratory findings. The key KE process-related concepts identified
276 directly relevant to our research scope are:

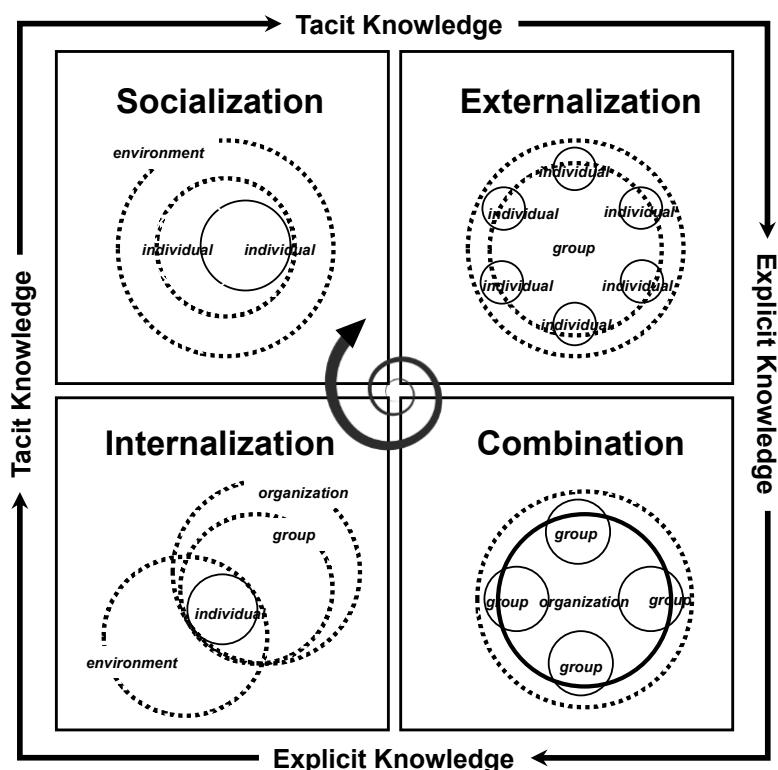
277 Trust: long identified as a critical pre-condition for achieving evidence-informed policy (Cvitanovic et
278 al., 2021). Building and maintaining trust can lead to impactful KE (Kapoor et al., 2023). With trust in
279 place, open communication and collaboration can lead to development of boundary objects that are
280 relevant and accessible to knowledge users (Kapoor et al., 2023).

281 Information usability: which concerns its credibility, salience, legitimacy (Dilling & Lemos, 2011) ,
282 often discussed alongside actionable knowledge (Stern, 2018), and associated with the commonly
283 desired social outcomes of KE (e.g. networking, awareness, learning, trust-building) (Karcher et al.,
284 2021).

285 Learning: (especially social learning) is implicit throughout KE process (Reed et al., 2010). Learning
286 can support joint knowledge production for socially robust knowledge generation (Hegger et al., 2012;
287 Nowotny et al., 2003). When learning space is cultivated between science and practice, knowledge can
288 be transferred to be actionable faster (Stern et al., 2020).

289 Boundary object: Increasing attention has been paid to roles of knowledge broker, boundary
290 organizations, and boundary object in producing useful information and facilitating mutual learning
291 among research, policy and practice (Bednarek et al., 2016; Bednarek et al., 2018; Cash et al., 2003;
292 Cvitanovic et al., 2017; Maag et al., 2018; Reinecke, 2015), When culturally sensitive, boundary work
293 is more likely to gain acceptance among practitioners (Dannevig et al., 2020).

294 Knowledge integration: Highly discussed sub-process of KE given its precondition for effective
295 collaboration and meaningful outcomes (Stepanova et al., 2020), but remains challenging. Knowledge
296 integration aims for development of action-oriented solutions (Hoffmann et al., 2017).


297 Practice ‘beyond’: New projects, initiatives, funding and other uptake of outputs are desired beyond
298 original project contexts, through co-production (Karcher et al., 2024).

299 Researcher capacity: Engagement and participatory research is needed for co-production in KE
300 process, consequently, the researcher’s capacity as a facilitator is required: they should align their
301 communication with the need of users in the behavioral and intellectual sense, e.g. using narratives and
302 story-telling (Young, Nguyen, et al., 2016b). The role of knowledge brokerage in facilitating mutual
303 learning is increasingly recognized (Cvitanovic et al., 2015a; Maag et al., 2018): brokers hold unique
304 positions to build and maintain relationship with knowledge users (Kapoor et al., 2023). Researchers
305 need to be clear about their role and purpose to conduct stakeholder interaction (Knaggård et al., 2019).

306 Upon reviewing and selecting the above KE process-related concepts to be included in this study, we
307 noted that they are currently discussed in a disconnected and isolated manner, reinforcing our view of
308 this hindrance to theoretical development and the need to systematically synthesize them for
309 development of the KE field.

310 **2.3. The SECI model from the Knowledge Creation Theory (KCT)**

311 To address these challenges, our study leverages the SECI model's capacity to integrate tacit-explicit
312 knowledge conversion within a KE process. The SECI model is from the Knowledge Creation Theory.
313 The notion that knowledge is categorized into two different types, i.e. tacit and explicit (Polanyi, 1968),
314 and that the conversion between them through sharing, translation, integration and embedding, laid the
315 foundation of Nonaka's Knowledge Creation Theory (Nonaka, 1994). Tacit knowledge usually refers to
316 knowledge that is embedded in experience and difficult to communicate and transfer because it is hard
317 to be codified. Explicit knowledge refers to knowledge that is codified and documented with words or
318 symbols thus can be easily shared and transferred. The identification of the importance of the tacit
319 dimension of knowledge, and the adaptation of Nonaka's SECI model to elaborate understanding on
320 the value of tacit knowledge and knowledge conversion in environmental management (Roux et al.,
321 2006; Stern et al., 2020) support this theoretical selection for this study

322
323 **Figure 1. SECI model as the spiral evolution of Knowledge Conversion Process. A schematic**
324 **illustration based on Nonaka and Takeuchi (2021).**

325
326 At the center of KCT, SECI model consists of four modes, namely Socialization, Externalization,
327 Combination, Internalization, representing different conversions between tacit and explicit knowledge
328 (Figure 1). Detailed definition of each mode is presented later alongside the findings.

329 By foregrounding the tacit knowledge dimension—especially as it relates to local knowledge—we
330 enhance the explanatory power of KE theory and clarify the conceptual linkages that underpin it. This
331 allows us not only to refine existing KE frameworks but also to propose a more robust and dynamic
332 theoretical model that better accounts for the nature of knowledge itself in its most elusive forms.

333 Our approach contributes to theory-building in KE by offering a rigorous conceptual integration of
334 knowledge dynamics grounded in well-established organizational learning theory. This enriches the KE
335 discourse and provides practical pathways to improve the exchange, co-creation, and application of
336 knowledge in sustainability and environmental governance.

337

338 **3. Method**

339 This exploratory study adopts a retrospective interpretive qualitative approach, supported by empirical
340 data collected through pertinent qualitative methods. The research aimed to uncover linkages among
341 knowledge exchange (KE) process-related concepts by employing the SECI model, which incorporates
342 the critical notion of tacit-explicit knowledge conversion. The empirical data came out of a study which
343 utilized a methodology which centers on such tacit-explicit conversion. By analyzing an empirical KE
344 process—first with respect to pre-identified KE process-related concepts and then through the SECI
345 model—the study aligned these concepts with the distinct modes of the SECI model, thereby
346 identifying linkages between conceptual dynamics and knowledge conversion stages.

347 **3.1. Case description**

348 The empirical data used in this study is originally from a project exploring whether decisions of local
349 climate change adaption which are strongly influenced by values (Adger & Barnett, 2009; O'Brien &
350 Wolf, 2010) can be improved by a values-crystallization process, named *WeValue InSitu*, in which
351 participants are facilitated to articulate not only themselves, but also the shared values-in-action of their
352 group. It includes a meaning-making and meaning-checking process in which participants are
353 facilitated to iteratively share, examine, challenge, and make conversions between their tacit and
354 explicit knowledge (Odii et al., 2021). This values-based process was used as a pre-process to standard
355 participatory Vulnerability Risk Assessments (VRA) in a multiple-case study carried out in four
356 villages in the North-East District of Botswana - one of the most climate-vulnerable countries
357 worldwide. In each of these four villages, the researcher with a local background carried out the above-
358 mentioned combined processes with local practitioners from the Village Development Committee
359 (VDC), the official local representation of the village, to develop their local adaption plan. The
360 *WeValue InSitu* process was demonstrated (Sethamo et al., 2019) and suggested to have positive effect
361 on local adaptation plan (Locatelli et al., 2022).

362 Upon retrospective interrogation of the data we noticed the data was promising for generating process-
363 related learning for KE because it satisfied three out of four aspects by which KE is usually evaluated:
364 process, understanding, practice/policy and impact (Fazey et al., 2014). This project had a
365 comprehensive implementation of a design which provides rich process-related data which is very
366 useful for exploration; it was demonstrated to facilitate local stakeholders' attitude and intention of
367 local adaptation which counts as a meaningful KE outcome; it involved production of local level
368 climate change adaptation plans which counts as meaningful KE outcome (see Sethamo et al. (2022)).
369 Although documentation of the impact dimension was absent from the design, the results are still rich
370 enough to provide insights for future studies. Therefore, we decided to conduct a retrospective analysis
371 with a focus on the process of this project, with the research objectives to identify linkages among the
372 process-related concepts and to generate insights. We provide schematically illustrate the case design
373 and implementation in Figure 2 and would anticipate that if the results are promising then future study
374 can be designed to provide further proofs.

375

Day 1

WeValue InSitu Process

crystallization of shared values of local stakeholder

- I. Contextualizing the discussion
- II. Warming up through photo-elicitation
- III. Individually reading trigger statements
- IV. Collectively discussing and negotiating expressions of shared values
- V. Collectively constructing framework using negotiated shared values statements
- VI. Final production: Shared Values Framework

Feedback session (Day 1)

Day 2

Vulnerability Risk Assessment

construction of local climate change adaptation plan

- I. Providing scientific information about specific climate change risk types
- II. Collective discussing how each risk might apply in the village
- III. Collective discussing who is vulnerable to these contextualized risks
- IV. Collective planning how to adapt for these risks
- V. Final production: Local Adaptation Plan

Feedback session (Day 2)

After 1-2 Weeks

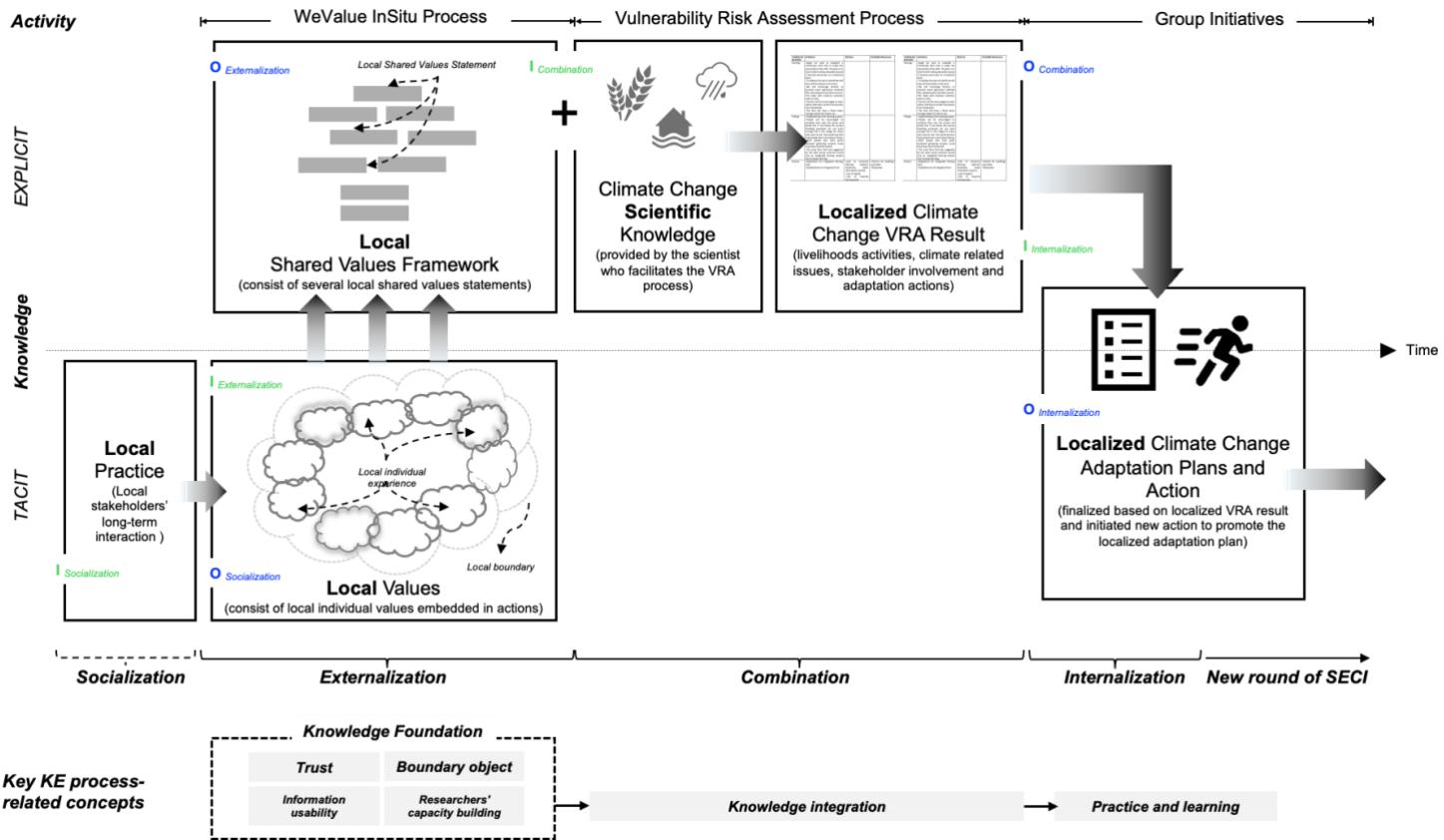
Post-interview session

376

377 **Figure 2. A schematic illustration of the case design and implementation applied in four villages**
378 **in the North-East District of Botswana for local climate change adaptation planning.**

379

3.2. Data collection and analysis methods


381 All sessions, including *WeValue InSitu* process, VRA process, and interviews were audio recorded in
382 the field, with informed consent from participants. Later, verbatim transcriptions of the recordings in
383 local language were conducted by a local native speaker, who then worked with the practice-based field
384 researcher to jointly translate the transcriptions into English to minimize any loss of meaning of the
385 qualitative data.

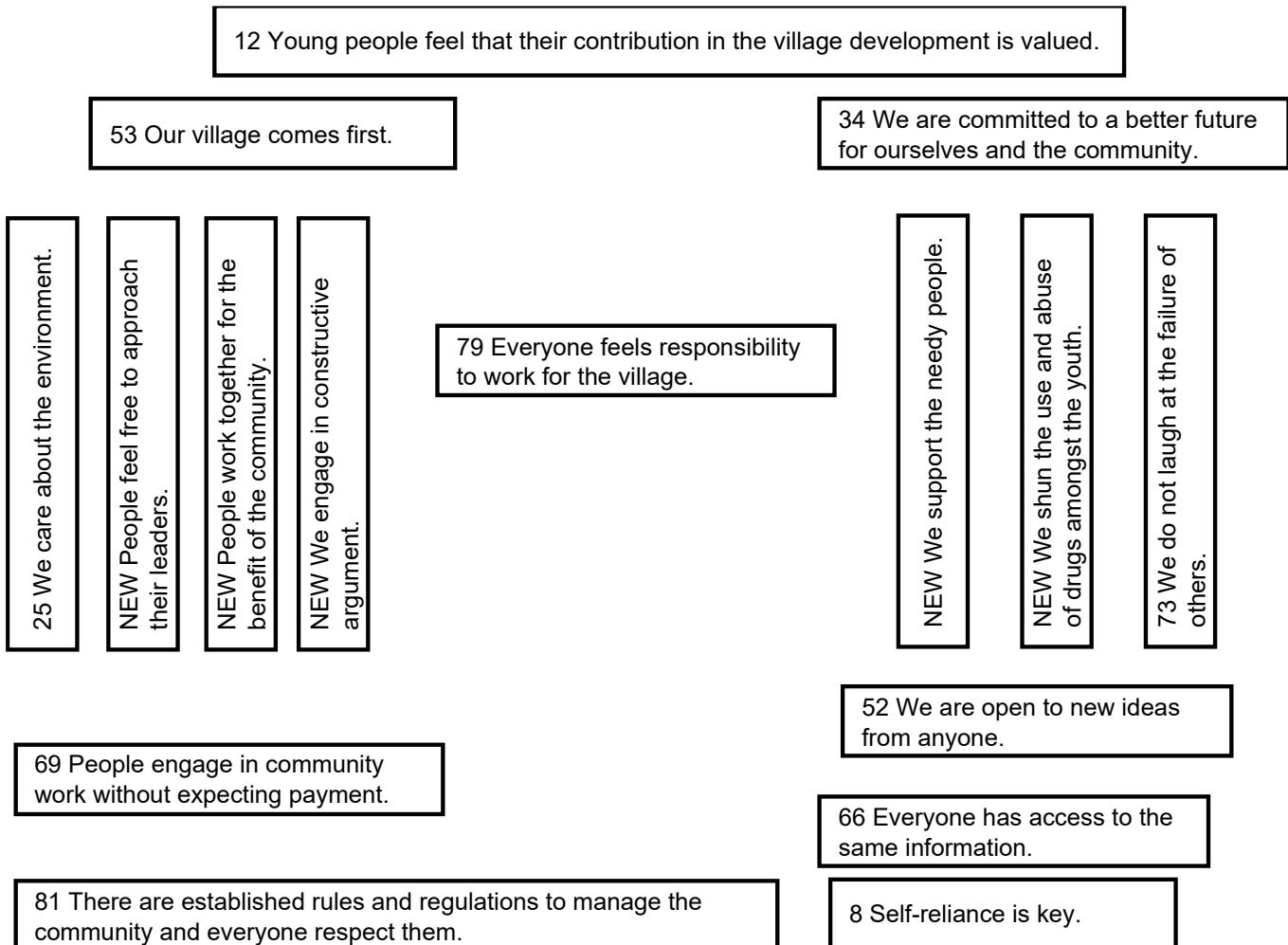
386 Regarding the retrospective analysis, we took a directed content analysis approach (Hsieh & Shannon,
387 2005) to identify the appearances of each SECI mode and process-related concepts in our initial coding
388 list derived separately from existing literatures. During the analysis, we immersed ourselves in the data
389 and allowed new themes to emerge to construct the final coding list (Miles & Huberman, 1994). We
390 expected new influencing KE process-related concepts to emerge since no such systemic literature
391 review has yet been carried out that we could rely upon, as mentioned above. To ensure analysis
392 validity, three researchers who did not deeply interact with this research but who practiced in the field
393 were commissioned to carry out the analysis independently first, and then compare their results
394 followed by a session of debate and critical reflection to finalize the results, all as suggested by Lincoln
395 and Guba (1985).

396

397 4. Results

398 By interrogating the KE process data with respect to the key KE process-related concepts and the SECI
 399 model, we identified one horizontal and one vertical linkage, hence, we present this as a ‘framework’ in
 400 Figure 3 by which key KE process-related concepts can be organized. We illustrate the inputs and
 401 outputs of knowledge of each SECI mode in terms of their nature of knowledge (i.e. being tacit or
 402 explicit) in a chorological order, in which different activities were carried out. Our data indicates that
 403 the KE process in this study is a partial SECI spiral process, suggesting that facilitating such a SECI
 404 spiral could lead to desired KE process, aligning with Stern et al. (2020).

405


406 **Figure 3. A schematic illustration of how the case activities, key KE process-related concepts,**
 407 **SECI model sequences, are connected in the KE process between the researcher and the local**
 408 **village development committee members in this study. Input (I) and Output (O) of each mode are**
 409 **indicated.**

410

411 **Socialization.** According to SECI model, individuals share and learn from each other's tacit knowledge
 412 through daily social interactions including observation and imitation. Experience is crucial, in that tacit
 413 knowledge is difficult to be formalized and transferred, and is acquired through shared experience.
 414 Mutual trust is often required, and also can be nurtured: in this mode, as individuals start to empathize
 415 with each other, and transcend their self-boundaries to intersubjectively know another (Nonaka et al.,
 416 2000). In this case study, there is no obvious Socialization promoted as the researcher has no
 417 significant shared experience with local stakeholders.

418 **Externalization.** Externalization is the process of articulating individual tacit knowledge into explicit
 419 knowledge. It happens when metaphor, analogy and model are used in dialogue to create new explicit
 420 concepts (Nonaka, 1994). In this case, we found Externalization was facilitated by the *WeValue InSitu*
 421 process in which participants (local stakeholders) articulated their shared values into statements and
 422 then prioritized and constructed a shared values-based framework of them, representing criteria shared

423 by the group for decision-making. A sample framework is shown in Figure 4 below for one VDC with
424 their unique, bespoke statements and framework structure. We found mutual trust was cultivated
425 through Externalization and the usability of information (evidenced by data given in Supplementary
426 Table S1) to produce actionable knowledge was enhanced. The shared-values framework was
427 recognized and utilized to be a boundary object (evidenced by data given in Supplementary Table S2)
428 (Wallis et al., 2017), while the researcher who facilitated the process was seen to build capacity to
429 conduct participatory study as a 'Campaigner' (Reed & Rudman, 2023).

430

431 **Figure 4. A sample shared-values frameworks developed by the VDC Ta group during the**
432 ***WeValue InSitu* process.**

433

434 **Combination.** In this mode explicit knowledge from different resources are brought together and
435 systematically synthesized to produce more complex explicit knowledge (Nonaka et al., 2000). In this
436 case-study, this mode is found to be facilitated during the (post-*WeValue InSitu*) VRA process. The
437 outcome of Combination here are localized Vulnerability Risk Assessments, including livelihoods
438 activities, climate-related issues, stakeholder involvement and adaptation actions. Participants utilized
439 both explicit knowledge they articulated during *WeValue InSitu* (local shared values), and explicit
440 knowledge provided by the researcher (scientific knowledge of climate change), to create new explicit
441 knowledge. In addition, participants indicated high ownership of the results as they clarified their roles
442 and responsibilities as committee members. In terms of KE, the integration of two types of knowledge
443 was facilitated (evidenced by data given in Supplementary Table S3).

444 **Internalization.** In this mode explicit knowledge is converted into tacit knowledge from collective
445 level (group or organization) to individual level, and thus is essential for learning in the traditional
446 sense. When new knowledge is embedded in an individual, their individual tacit knowledge is enlarged
447 and thus learning happens. “Learning by doing” is key for this mode.

448 In this case, no activities were designed to purposefully promote this mode, for example to contact
449 local stakeholders afterwards to encourage them to utilize their outputs (from the *WeValue InSitu*
450 process of Externalization and from the VRA process of Combination). However, Internalization still
451 did occur, since localized climate change adaptation plans were consequently produced and indeed
452 brought to attention of higher-level authorities on the initiative of the local groups. Local stakeholders
453 were also consequently motivated by the increased relevance and authenticity of their plans to
454 themselves: outcomes seen resulting from Externalization and Combination processes. We therefore are
455 confident to argue this mode was triggered by the process-oriented outcome from previous modes. In
456 KE terminology, the appearance of these consequential actions clearly evidenced that social learning
457 and desired actions took place, which are deemed necessary in KE process.

458

459 **5. Discussion**

460 Below, we discuss in detail how the framework which emerged from this study is centered around the
461 two new identified linkages informed KE theory building, and we note the key usefulness of the SECI
462 model in this emergence.

463 **5.1. The vertical linkages – a ‘Knowledge Foundation’ as a unique outcome of the 464 Externalization mode**

465 The mapping shows several KE process-related concepts intertwined with each other in the phase
466 where the *WeValue InSitu* process was facilitated to assist local stakeholders to articulate their values,
467 i.e. Externalization. We argue and label the following set of concepts (i.e. trust, information usability,
468 object boundary, researcher capacity) together form a ‘Knowledge Foundation’ which provided
469 necessary preparedness for next two KE process-related concepts (knowledge integration; practice and
470 learning) and it is a unique outcome of the Externalization mode. We note there may be sub-sequences
471 within or related contextual concepts, however, outside the scope of this paper.

472 **Trust**

473 In this study, mutual trust at the interface of the researcher and local stakeholders was found to be
474 nurtured during Externalization where intensive engagement happened through dialogue with respect to
475 local shared values. Evidence is found throughout transcriptions of the workshops in terms of
476 participants' rich feedback and deep reflections on their shared values, indicating a high level of
477 openness to the researcher. In addition, some participants subsequently contacted the research to return
478 to assist them further:

479 *“I believe what you have taught us, even though you were not really teaching but asking questions and
480 listening, is really import. It was important for us to be able to answer your questions. I would say if
481 you had anything that you still want to ask us please do come back.”*

482 KE literature stresses the significant role of trust (Cvitanovic et al., 2021; Stern et al., 2020) as it helps
483 improve salience, credibility and legitimacy of information. Other research emphasizes the importance
484 of participatory action research (e.g. Mapfumo et al., 2013; Meadow et al., 2015). Underlying is the
485 notion of the need to promote relationships founded upon trust between scientists and decision-makers
486 (Cvitanovic et al., 2016) to empower long term collaboration.

487 Mutual trust is also in SECI model, where it should be established and nurtured in Socialization mode,
488 as it is an essential foundation for the whole spiral of subsequent knowledge creation modes (Nonaka et
489 al., 2000). It is usually hard to achieve in real-life KE settings as it is finance- and time-consuming:
490 people from different interfaces should first come together and socialize themselves through
491 observation and imitation. Our findings indicate it can be efficient and possibly more effective to

492 achieve this by engaging in the 2-3 hours *WeValue InSitu* process, where Externalization is the goal but
493 because it involves genuine dialogue through meaning-making around local shared values, mutual trust
494 is also established. The goal of knowledge integration in the context of many sustainable challenges
495 (e.g. biodiversity protection, climate change adaptation), could similarly benefit from such effective use
496 of the Externalization mode for relationship building, removing the condition for prior Socialization.
497 This is also a new insight for studies concerning knowledge brokerage and boundary organization
498 which are here proved capable to enable relationship and trust building (Rathwell et al., 2015;
499 Robinson & Wallington, 2012; Wyborn, 2015), particularly concerning the key nodes or necessary
500 conditions to optimize their efficiency (Bednarek et al., 2018; Reinecke, 2015).

501 **Information usability**

502 In our case-study participants reported certain new collaborative capacity built through *WeValue InSitu*
503 process, in their ability to self-identify relevance between local life (driven by local shared values) and
504 potential climate change issues (supported by scientific knowledge), after conversion of their local tacit
505 knowledge into explicit. It thus seems that the quality of knowledge included in the KE process was
506 enhanced by this increased capacity of the knowledge receivers. Their capacities to create, access,
507 interpret and apply scientific knowledge are core to knowledge exchange (Van Kerkhoff & Lebel,
508 2015).

509 This effect can be viewed as an increase in the perceived fit of information (Lemos & Morehouse,
510 2005), occurring within a relatively short period of time compared to normal social interaction.
511 Furthermore, mismatches between tacit and explicit knowledge were reduced, since *WeValue InSitu*
512 meaning-making helped make explicitly articulated some local tacit knowledge, also increasing the
513 usability of information (Lemos et al., 2012). Participants produced actionable knowledge afterwards
514 by making the truthfulness evaluation easier - possibly because, during the process, people organized
515 and articulated values which they based judgement on.

516 **Boundary objects**

517 Boundary objects are considered key components to enable shared understandings and reconfigure
518 focus for the emergence of a knowing system for collaborative partnerships (Wallis et al., 2017). The
519 iterated use of boundary objects by various stakeholders assures information outputs to be salient,
520 credible and legitimate (Cash et al., 2003). In this study we identified that the shared values
521 frameworks constructed in the WeValue Insitu process qualified as boundary objects to mediate
522 communication and shared understanding across boundaries between researchers and local
523 stakeholders. Those shared-values frameworks were later applied by the participants to VRA process
524 where they integrated local and scientific knowledge in a more explicit way. Moreover, these boundary
525 objects were intersubjectively developed with researchers and local stakeholders together, through
526 which researchers as facilitators inevitably involved in the tacit and explicit knowledge translation of
527 the participants. Despite the neutral position of the facilitator taken and absence of value judgments
528 made when participants were collectively meaning-making and -checking shared values, he has
529 enhanced his tacit and explicit understanding of the participants to a certain level, although not as
530 intersubjective as participants, which enables him to better communicate and apply the boundary object
531 in the Combination mode.

532 According to SECI model, as stated by Nonaka (1994), "...knowledge creation is a continuous, self-
533 transcending process through which one transcends the boundary of the old self into a new self by
534 acquiring a new context, a new view of the world, and new knowledge". Importance of boundary work
535 in increasing knowledge usability has long and widely been advocated in environmental studies (e.g.
536 Hegger et al., 2012; Offermans & Glasbergen, 2015; Van Kerkhoff & Lebel, 2006). However, not
537 enough attention has been paid to understand knowledge processes in which boundaries are dissolved
538 (Lejano & Ingram, 2009). Through the SECI lens, this case-study reveals a vital timing for boundary
539 object formation: when tacit knowledge is articulated into explicit, i.e. Externalization mode. Then,
540 those involved make commitment to become 'one with the group' and transcend their inner-outer-
541 boundaries (Nonaka et al., 2000). Hence, in our Externalization a result is not only the object
542 formation, but also that the people involved can be supported to cross boundaries. This provides a piece
543 of new understanding: that converting tacit knowledge into explicit knowledge (Externalization mode)
544 is more crucial than other modes of knowledge conversion for producing useful boundary objects to

545 support KE crossing boundaries.

546 ***Researcher capacity – From knowledge broker to ‘Campaigner’***

547 In this study, the researcher, while facilitating, built up his capacity to engage with local stakeholders
548 by understanding local shared values, and subsequently was able to introduce external scientific
549 knowledge in a more relevant and acceptable manner for local stakeholders. The researcher’s
550 interpretation of local implications of general scientific knowledge to stakeholders is then improved, as
551 desired for KE (Reed et al., 2014). We thus argue that that researchers could endeavor to acquire such
552 capacity to facilitate tacit and explicit knowledge conversion. In this case, certified training as
553 facilitator of *WeValue InSitu* process enabled this.

554 Knowledge broker facilitation of interaction and mutual learning at a multi-faceted interface is
555 increasingly recognized as important for KE (Andrachuk et al., 2021; Cvitanovic et al., 2015b; Maag et
556 al., 2018). Researchers are required to go beyond mere information producing, to become a knowledge
557 broker who tailors interaction strategies to match preferences of target groups (Phillipson et al., 2012;
558 Reed et al., 2014; Young, Nguyen, et al., 2016b), through meaningful interactions which minimize the
559 knowledge gap between researchers and stakeholders (Clark et al., 2019). A corresponding capacity
560 building of researchers is needed (Evans & Cvitanovic, 2018) to socially engage with different
561 stakeholder for better sustainability transformation (Rozance et al., 2020) and further strive to become
562 ‘Campaigners’ to create impact out of research, into policy making one of whose roles is the “explicit
563 recognition and communication of personal values underpinning research and impact”. In this case,
564 while participants are enabled to integrate both local and scientific knowledge in explicit form, the
565 researcher is additionally enabled to interpret and communicate better the scientific knowledge in
566 stakeholders’ perspective, to align his communication with the need of users in the behavioral and
567 intellectual sense (Young, Nguyen, et al., 2016b).

568 In summary, our findings show that the utilization of tacit knowledge leads to the formation to a
569 ‘Knowledge Foundation’ - consisting of trust, information usability, boundary object and Campaigner-
570 capable researcher – which fulfill part expectations from Phase 0 (Horcea-Mulcu et al, 2022) so to
571 strengthen transdisciplinarity and transformation nurturing. In this case, local stakeholders’ tacit
572 knowledge concerning their shared values was converted into explicit knowledge during which the
573 researcher and participants crossed their boundaries to build mutual trust, to form boundary object, and
574 to develop their capacities to increase the information usability and to promote social engagement.
575 Various kinds of knowledge supporting actions for sustainability are tacit (Caniglia et al., 2021) in KE
576 literature. Our findings support the previous argument that tacit knowledge should be appreciate as
577 much as explicit knowledge in forming the knowledge interface between stakeholders from different
578 community of practice (e.g. scientist and manager) which facilitates collaborative learning, shared
579 understanding of key concepts and eco-evolution towards common purpose, intent and action (Roux et
580 al., 2006). Further, we pointed out the necessity to underscore the process where tacit knowledge is
581 utilized. This is in line with the statement from the theory that the mobilization of tacit knowledge is
582 realized through its externalization and amplification (internalization) by facilitating constant
583 interaction between tacit and explicit knowledge. This also implies a knowledge perspective with a
584 focus on the conversion process can be informative for KE theory building. We argue that both the
585 condition of KE and the agents of KE are equipped during this process, therefore, a foundation is built.
586 In the next section, we present our findings on how this Knowledge Foundation support the following
587 process towards KE.

588 **5.2. The horizontal linkages – An informative sequence leading to actual practice**

589 In this section, we present the findings suggesting a specific sequence emerged from the mapping. That
590 is, following the development of the Knowledge Foundation, knowledge integration between local
591 knowledge and scientific knowledge (ending up with a localized climate change adaptation plan) and
592 the actual practice through ‘learning by doing’, were sequentially realized.

593 ***Knowledge integration***

594 Unlike the positivistic stance where researchers are seen as experts to lead the knowledge integration
595 and decision makings, the explicit scientific knowledge regarding climate issues in this study was

596 introduced by the researcher in a manner that the local stakeholders are encouraged to take a relational
597 subjectivist stance and to identify the relevant risks, resources and actions for their local plans. Some
598 quotations from transcriptions of VRA processes and post-interviews provide supporting evidence of
599 the active integration of local values and scientific information throughout the process. Our findings
600 demonstrate a pathway to tackle the challenge well recognized by the KE literature to integrate local
601 and scientific knowledge. On the local level, it has been recognized to be challenging to consider local
602 and scientific knowledge in parallel to produce user-driven management approaches (Reed et al.,
603 2007). One reason could be that local knowledge held by the stakeholders is mostly in tacit nature
604 which embedded in local people's experience and hard to articulate and rarely formally documented
605 (Raymond et al., 2010). In addition, as advocated by previous literature (Miller et al., 2008), more
606 attention should be paid to different ontological and epistemological perspectives adopted as they shape
607 and influence decisions on types of knowledge being integrated, and ways of knowing being valued in
608 KE process. In this sense, this study becomes more meaningful, given the local knowledge articulated
609 and integrated is local values, which reflect to some extent local perspectives on ontology and
610 epistemology, and consequently improve the quality of KE.

611 The integration of knowledge in this case happened when explicit local share values and explicit
612 climate change risk information were considered together to produce a systematic plan for local
613 adaptation, i.e. in the Combination mode. Theoretically, this mode is supported by Externalization
614 mode through which tacit knowledge that cannot be easily transferred, communicated and integrated as
615 explicit knowledge is converted/articulated. Without sufficient Externalization, commitment of
616 participants to become one group and personal meanings of tacit knowledge are in absence, which
617 eventually lead to superficial interpretation of existing knowledge without capturing the here-and-now
618 reality (Nonaka, 1994). In this case, what happened after the Combination is that the participants later
619 take their own initiatives without researcher interfering to finalize their own localized climate change
620 adaptation plan and further submit it to the higher-level institutions. This change in action is strong
621 evidence to support that the Combination happened is not superficial but concrete for Internalization.
622 That is to say, the combination of explicit knowledge can still happen but what is created will not be
623 concrete enough to facilitate further modes in a wider social context. This elaboration allows better
624 understanding on the supporting condition for knowledge integration and again underscores the
625 importance of Externalization mode for meaningful KE.

626 ***Practice and learning***

627 Although post-event knowledge integration was not purposefully promoted by design in this case, the
628 local participants self-reported that they actively took initiatives afterwards, e.g. forming a new
629 farmer's committee, submitting and presenting their own climate change adaptation plan to the higher-
630 level institution. We view these as evidence of actual practice of the type desired for outcomes of KE.

631 When viewing this through the SECI lens, we argue that a vital node in promoting social learning
632 through various means for maximize KE output can be the Internalization mode, given that 'learning by
633 doing' is the major way to convert explicit knowledge into tacit knowledge, and amplify both
634 individual and collective knowledge assets according to the theory. On the basis from the knowledge
635 integration from the previous mode, a loop between the active initiatives and learning would then be
636 promoted. Nevertheless, we still need future studies to comprehensively investigate what kinds of
637 learning occur and what roles they play throughout the whole KE process.

638

639 **5.3. Usefulness of SECI model and Knowledge Creation Theory for KE theory building**

640 Moving beyond specific findings on the linkages, we discuss here the usefulness of the SECI model for
641 theory building for KE process.

642 Theoretically, several guiding principles of the SECI model match with those of KE process. On the
643 one hand, the central theme of SECI model hinges on the dynamic between different modes of
644 knowledge conversion, especially, on the interchange between tacit and explicit knowledge through
645 externalization and internalization (Nonaka, 1994). Because of the dynamic, multi-level, multi-actor,
646 and iterative nature of organizational Knowledge Creation Theory, the SECI model presents the

647 conversion of tacit and explicit knowledge as an endless knowledge creation spiral initiating from
648 individual, moving towards higher ontological level to group, organization, across organization,
649 looping back to the individual and starting again. Within each mode, new rounds of SECI spiral can be
650 triggered on different ontological levels as well. It is an iterative and dynamic process with constant
651 reflection involved. On the other hand, the fluid and dynamic nature of KE has to be acknowledged
652 when studied (Fazey et al., 2014; Fazey et al., 2013). Approaches to KE-related research need to
653 recognize and acknowledge knowledge as a complex system wherein individuals' subjectivities play a
654 major role (Evely et al., 2011; Fazey et al., 2014), and thus highlight the iterative learning loops and
655 tacit knowledge management of stakeholders as these sometimes dominate in decision-making
656 compared to scientific knowledge (Contandriopoulos et al., 2010; Dobrow et al., 2004). The five
657 principles for effective KE have an iterative nature that starting from Design and ending with Reflect
658 and Sustain (Reed et al., 2014). In Principle 5, identification of future needs for continuing and
659 sustaining the exchange in the longer-term are required, which lead to a new round of exchange.
660 Moreover, for each principle, different stakeholders on different scales are required to interact and
661 engage for exchanging different types and forms of knowledge.

662 Moreover, SECI model can provide an informative sequence of knowledge conversion for KE process.
663 As discussed above, some influential concepts from KE field are identified as being reflected in
664 different modes of SECI model. Some of them stand out in one mode while some come across several
665 modes. The adoption of SECI model can thus inform the identification of priorities and relationship
666 among some of the concepts, connecting them in a coherent manner. From the data, a specific learning
667 from this sequence is that when it is time- and effort-consuming to nurture Socialization on the
668 interface between science and practice, well-facilitated Externalization can compensate for it, and
669 further strengthen Combination and Internalization.

670 Nonetheless, we also strengthen the importance of distinguishing the type of knowledge involved. The
671 type of tacit knowledge externalized in this study was the local values which reflect the local ontology
672 and epistemology to some extent, and therefore reduce the bias, dominating the ways of knowing, and
673 increasing the quality of the desired KE process. According to Raymond et al. (2010), even more
674 categories of tacit knowledge involved in KE are present, including other types of local knowledge and
675 some types of scientific knowledge (e.g., expertise experience). Hence, it is worth incorporating this
676 idea in the interpretation of the work and KE theory building. Specifically, we would call for future
677 studies to exam and test the transferability and generalizability of the framework shown in Figure 3 by
678 replacing the type of knowledge of the inputs and outputs while maintaining the same nature of
679 knowledge. For instance, indigenous knowledge/wisdom with respect to a unique type of know-how
680 could be a salient starting point.

681

682 **6. Conclusion**

683 Leveraging on the notion of tacit-explicit knowledge conversion, we have contributed towards
684 advances in KE theory by uncovering how key process-related concepts could combine and sequence
685 over time by investigating this particular empirical case. We identified two critical linkages: (1) a
686 'Knowledge Foundation' platform, where tacit knowledge gets converted into explicit knowledge and
687 enables effective subsequent KE, and (2) a sequential progress of concepts, demonstrating how KE
688 unfolds dynamically towards concreate practice on the ground. Our findings revealed the utility of
689 SECI model for theorizing KE processes, particularly in structuring temporal interdependencies among
690 long-identified concepts. These preliminary findings provide ideas for theory development which has
691 potential to connect greater concepts and thus deserves further investigation.

692 We argue the utilization of tacit knowledge is critical as it sets up what we have labelled the
693 'Knowledge Foundation' for later knowledge integration and action promotion. It seems that both the
694 condition and the agents of KE can be equipped through the development of such a Knowledge
695 Foundation. Our findings thus suggest usefulness of the perspective of knowledge as dynamic, and the
696 inclusion of consideration of its tacit and explicit dimensions. These lessons can inform KE process
697 design, and are not restricted to specific contexts, contributing to a new level of theory building, and
698 also to linking KE process to more theoretical bases.

699 Although not the focus of this study, practical implications can be gained. We highlight how tacit-
700 explicit knowledge conversion through shared-values-crystallization methods like *WeValue InSitu* can
701 promote the bridging of science-practice boundaries and fostering co-creation. This type of
702 contribution is highly sought and deserves further analysis for generalization. Limitations of this work
703 include not systematically reviewing *all* KE concepts, and only focusing on specific process-related
704 concepts for science and practice interfaces. Future study could more systematically follow up on this
705 exploratory work, possibly extending consideration to other interfaces, and levels of governance, and
706 the likely context-transcendence of the findings. By grounding KE theory advancement seeking in
707 knowledge dynamism, we offer a step towards more actionable and time-sensitive theory.

708

709 **Declaration of generative AI and AI-assisted technologies in the writing process**

710 During the preparation of this work the author(s) used DeepSeek in order to improve the English
711 language of the manuscript. After using this tool/service, the authors reviewed and edited the content as
712 needed and take full responsibility for the content of the publication.

713

714 **Acknowledgements**

715 N/A

716

717 **Declaration of Interest statement**

718 The authors declare that they have no known competing financial interests or personal relationships
719 that could have appeared to influence the work reported in this paper.

720

721 **Reference**

722 Adger, W. N., & Barnett, J. (2009). Four reasons for concern about adaptation to climate change. *Environment and Planning A*, 41(12), 2800-2805.

724 Andrachuk, M., Kadykalo, A., Cooke, S., Young, N., & Nguyen, V. (2021). Fisheries knowledge
725 exchange and mobilization through a network of policy and practice actors. *Environmental
726 Science & Policy*, 125, 157-166.

727 Aswani, S., & Hamilton, R. J. (2004). Integrating indigenous ecological knowledge and customary sea
728 tenure with marine and social science for conservation of bumphead parrotfish
729 (*Bolbometopon muricatum*) in the Roviana Lagoon, Solomon Islands. *Environmental
730 Conservation*, 31(1), 69-83.

731 Bautista, S., Llovet, J., Ocampo-Melgar, A., Vilagrosa, A., Mayor, Á. G., Murias, C., Vallejo, V. R., &
732 Orr, B. J. (2017). Integrating knowledge exchange and the assessment of dryland management
733 alternatives - A learning-centered participatory approach. *Journal of Environmental
734 Management*, 195 (1), 35-45. <https://doi.org/10.1016/j.jenvman.2016.11.050>.

735 Bednarek, A. T., Shouse, B., Hudson, C. G., & Goldburg, R. (2016). Science-policy intermediaries
736 from a practitioner's perspective: The Lenfest Ocean Program experience. *Science and public
737 policy*, 43(2), 291-300.

738 Bednarek, A. T., Wyborn, C., Cvitanovic, C., Meyer, R., Colvin, R., Addison, P. F., Close, S. L.,
739 Curran, K., Farooque, M., & Goldman, E. (2018). Boundary spanning at the science–policy
740 interface: the practitioners' perspectives. *Sustainability Science*, 13, 1175-1183.

741 Best, A., & Holmes, B. (2010). Systems thinking, knowledge and action: Towards better models and
742 methods. *Evidence & Policy: A Journal of Research, Debate and Practice*, 6(2), 145-159.

743 Bliss, K., Padel, S., Cullen, B., Ducottet, C., Mullender, S., Rasmussen, I.A., et al.(2018) Exchanging
744 knowledge to improve organic arable farming: an evaluation of knowledge exchange tools
745 with farmer groups across Europe. *Organic Agriculture*. 9(4):383–398. 10.1007/s13165-018-
746 0238-6.

747 Bogatinoska, B., Lansu, A., Dekker, S. C., Hugé J., & Stoovogel, J. (2024) Knowledge exchange
748 between practitioners for the purpose of co-creating nature-based solutions, *Ecosystems and
749 People*, 20:1, 2415305, DOI:10.1080/26395916.2024.2415305

750 Boyes, B., Cummings, S., Habtemariam, F. T., & Kemboi, G. (2023). 'We have a dream': proposing
751 decolonization of knowledge as a sixth generation of knowledge management for sustainable
752 development. *Knowledge Management for Development Journal*, 17(1/2), 17-41.

753 Brown, V. A. (2010). Multiple knowledges, multiple languages: are the limits of my language the
754 limits of my world?. *Knowledge Management for Development Journal*, 6(2), 120-131.

755 Caniglia, G., Lüderitz, C., von Wirth, T., Fazey, I., Martín-López, B., Hondrila, K., König, A., von
756 Wehrden, H., Schäpke, N. A., & Laubichler, M. D. (2021). A pluralistic and integrated
757 approach to action-oriented knowledge for sustainability. *Nature Sustainability*, 4(2), 93-100.

758 Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jäger, J., &
759 Mitchell, R. B. (2003). Knowledge systems for sustainable development. *Proceedings of the
760 national academy of sciences*, 100(14), 8086-8091.

761 Clark, L. B., Henry, A. L., Lave, R., Sayre, N. F., González, E., & Sher, A. A. (2019). Successful
762 information exchange between restoration science and practice. *Restoration Ecology*, 27(6),
763 1241-1250.

764 Contandriopoulos, D., Lemire, M., Denis, J. L., & Tremblay, É. (2010). Knowledge exchange
765 processes in organizations and policy arenas: a narrative systematic review of the literature.
766 *The Milbank Quarterly*, 88(4), 444-483.

767 Cummings, S., Sittoni, T., Boyes, B., Atsu, P., Sanz, R., Senmartin, D., ... & Zielinski, C. (2025). The
768 state of the Knowledge Management for Development (KM4Dev) community in
769 2024. *Knowledge Management for Development Journal*, 18(2), 83-93.

770 Cvitanovic, C., Cunningham, R., Dowd, A. M., Howden, S. M., & Van Putten, E. (2017). Using social
771 network analysis to monitor and assess the effectiveness of knowledge brokers at connecting
772 scientists and decision-makers: An Australian case study. *Environmental Policy and
773 Governance*, 27(3), 256-269.

774 Cvitanovic, C., Hobday, A. J., van Kerkhoff, L., Wilson, S. K., Dobbs, K., & Marshall, N. A. (2015a).
775 Improving knowledge exchange among scientists and decision-makers to facilitate the
776 adaptive governance of marine resources: a review of knowledge and research needs. *Ocean
777 & Coastal Management*, 112, 25-35.

778 Cvitanovic, C., Hobday, A., van Kerkhoff, L., & Marshall, N. (2015b). Overcoming barriers to
779 knowledge exchange for adaptive resource management; the perspectives of Australian marine
780 scientists. *Marine policy*, 52, 38-44.

781 Cvitanovic, C., Karcher, D. B., Breen, J., Badullovich, N., Cairney, P., Dalla Pozza, R., Duggan, J.,
782 Hoffmann, S., Kelly, R., Meadow, A.M., Posner, S. (2025). Knowledge brokers at the
783 interface of environmental science and policy: A review of knowledge and research needs.
784 *Environmental Science and Policy* 163 (2025) 103973.

785 Cvitanovic, C., Löf, M. F., Norström, A. V., & Reed, M. S. (2018). Building university-based
786 boundary organisations that facilitate impacts on environmental policy and practice. *PLoS
787 One*, 13(9), e0203752.

788 Cvitanovic, C., McDonald, J., & Hobday, A. (2016). From science to action: principles for undertaking
789 environmental research that enables knowledge exchange and evidence-based decision-
790 making. *Journal of environmental management*, 183, 864-874.

791 Cvitanovic, C., Shellock, R. J., Mackay, M., Van Putten, E., Karcher, D. B., Dickey-Collas, M., &
792 Ballesteros, M. (2021). Strategies for building and managing ‘trust’ to enable knowledge
793 exchange at the interface of environmental science and policy. *Environmental Science &
794 Policy*, 123, 179-189.

795 Dannevig, H., Hovelsrud, G. K., Hermansen, E. A., & Karlsson, M. (2020). Culturally sensitive
796 boundary work: A framework for linking knowledge to climate action. *Environmental Science &
797 Policy*, 112, 405-413.

798 Davenport, T. H., & Prusak, L. (1998). *Working knowledge: How organizations manage what they
799 know*. Harvard Business Press.

800 Desouza, K.C. (2003). Facilitating Tacit Knowledge exchange. COMMUNICATIONS OF THE ACM.
801 46, (6) 85-88.

802 Dilling, L., & Lemos, M. C. (2011). Creating usable science: Opportunities and constraints for climate
803 knowledge use and their implications for science policy. *Global Environmental Change*,
804 21(2), 680-689.

805 Dismore, H., Campbell-Barr, V., Manning, R., & Warwick, P. (2024) A relational approach to
806 knowledge exchange in higher education, *Studies in Higher Education*, 49:12, 2534-2545,
807 DOI: 10.1080/03075079.2024.2312404

808 Dobrow, M. J., Goel, V., & Upshur, R. (2004). Evidence-based health policy: context and utilisation.
809 *Social science & medicine*, 58(1), 207-217.

810 Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and
811 challenges. *Academy of management journal*, 50(1), 25-32.

812 Evans, M. C., & Cvitanovic, C. (2018). An introduction to achieving policy impact for early career
813 researchers. *Palgrave Communications*, 4(1), 1-12.

814 Evely, A. C., Pinard, M., Reed, M. S., & Fazey, I. (2011). High levels of participation in conservation
815 projects enhance learning. *Conservation Letters*, 4(2), 116-126.

816 Fazey, I., Bunse, L., Msika, J., Pinke, M., Preedy, K., Evely, A. C., Lambert, E., Hastings, E., Morris,
817 S., & Reed, M. S. (2014). Evaluating knowledge exchange in interdisciplinary and multi-
818 stakeholder research. *Global Environmental Change*, 25, 204-220.

819 Fazey, I., Evely, A. C., Reed, M. S., Stringer, L. C., Kruijsen, J., White, P. C., Newsham, A., Jin, L.,
820 Cortazzi, M., & Phillipson, J. (2013). Knowledge exchange: a review and research agenda for
821 environmental management. *Environmental Conservation*, 40(1), 19-36.

822 Foos, T., Schum, G. & Rothenberg, S. (2006) Tacit knowledge transfer and the knowledge disconnect.
823 *J. Knowl. Manag.* 10,6-18 (2006).

824 Habiyaremye, A. (2023) Co-learning in university-community engagement for sustainable local food
825 systems in South Africa. *Humanities and Social Sciences Communication*. 10:820.
826 |<https://doi.org/10.1057/s41599-023-02350-1>

827 Hegger, D., Lamers, M., Van Zeijl-Rozema, A., & Dieperink, C. (2012). Conceptualising joint
828 knowledge production in regional climate change adaptation projects: success conditions and
829 levers for action. *Environmental Science & Policy*, 18, 52-65.

830 Hoffmann, S., Pohl, C., & Hering, J. G. (2017). Methods and procedures of transdisciplinary
831 knowledge integration: empirical insights from four thematic synthesis processes. *Ecology
832 and society*, 22 (1).

833 Holste, J. S. & Fields, D. (2010) Trust and tacit knowledge sharing and use. *Journal of Environmental*
834 *Management*, 14, 128–140.

835 Horcea-Milcu, A. I., Leventon, J., & Lang, D. J. (2022). Making transdisciplinarity happen: Phase 0, or
836 before the beginning. *Environmental science & policy*, 136, 187-197.

837 Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. *Qualitative*
838 *health research*, 15(9), 1277-1288.

839 Kapoor, T., Falconer, M., Hutchen, J., Westwood, A. R., Young, N., & Nguyen, V. M. (2023).
840 Implementing and evaluating knowledge exchange: Insights from practitioners at the
841 Canadian Forest Service. *Environmental Science & Policy*, 148, 103549.

842 Karcher, D. B., Cvitanovic, C., Colvin, R. M., van Putten, I. E., & Reed, M. S. (2021). Is this what
843 success looks like? Mismatches between the aims, claims, and evidence used to demonstrate
844 impact from knowledge exchange processes at the interface of environmental science and
845 policy. *Environmental Science & Policy*, 125, 202-218.

846 Karcher, D. B., Tuohy, P., Cooke, S. J., & Cvitanovic, C. (2024). Knowledge exchange at the interface
847 of marine science and policy: A review of progress and research needs. *Ocean & Coastal*
848 *Management*, 253, 107137.

849 Knaggård, Å., Slunge, D., Ekbom, A., Göthberg, M., & Sahlin, U. (2019). Researchers' approaches to
850 stakeholders: Interaction or transfer of knowledge? *Environmental Science & Policy*, 97, 25-
851 35.

852 Knapp, C. N., Reid, R. S., Fernández-Giménez, M. E., Klein, J. A., & Galvin, K. A. (2019). Placing
853 transdisciplinarity in context: A review of approaches to connect scholars, society and action.
854 *Sustainability*, 11(18), 4899.

855 Kong, Z-H, Stringer, L.C., & Paavola, J. (2023). Knowledge exchange in the implementation of
856 National Environmental Programmes (NEPs) in China: A complex picture. PLoS ONE 18(7):
857 e0288641. <https://doi.org/10.1371/journal.pone.0288641>

858 Lejano, R. P., & Ingram, H. (2009). Collaborative networks and new ways of knowing. *Environmental*
859 *Science & Policy*, 12(6), 653-662.

860 Lemos, M. C., & Morehouse, B. J. (2005). The co-production of science and policy in integrated
861 climate assessments. *Global Environmental Change*, 15(1), 57-68.

862 Lemos, M. C., Kirchhoff, C. J., & Ramprasad, V. (2012). Narrowing the climate information usability
863 gap. *Nature climate change*, 2(11), 789-794.

864 Lepore, W., Hall, B. L., & Tandon, R. (2021). The knowledge for change consortium: A decolonising
865 approach to international collaboration in capacity-building in community-based participatory
866 research. *Canadian Journal of Development Studies*, 42(3), 347–370.
867 <https://doi.org/10.1080/02255189.2020.1838887>.

868 Li, L., & Zhao, N. (2023). Explicit and tacit knowledge have diverging urban growth patterns. *npj*
869 *Urban Sustainability*, 3(1), 34.

870 Lincoln, Y. S., & Guba, E. G. (1985). *Naturalistic inquiry*. sage.

871 Locatelli, B., Laurenceau, M., Chumpisuca, Y. R. C., Pramova, E., Vallet, A., Conde, Y. Q., Zavala, R.
872 C., Djoudi, H., Lavorel, S., & Colloff, M. J. (2022). In people's minds and on the ground:
873 Values and power in climate change adaptation. *Environmental Science & Policy*, 137, 75-86.

874 Maag, S., Alexander, T. J., Kase, R., & Hoffmann, S. (2018). Indicators for measuring the
875 contributions of individual knowledge brokers. *Environmental Science & Policy*, 89, 1-9.

876 Mapfumo, P., Adjei-Nsiah, S., Mtambanengwe, F., Chikowo, R., & Giller, K. E. (2013). Participatory
877 action research (PAR) as an entry point for supporting climate change adaptation by
878 smallholder farmers in Africa. *Environmental Development*, 5, 6-22.

879 McGill, E., Halliday, E., Egan, M., & Popay, J. (2023). Knowledge exchange in crisis settings: A
880 scoping review. *PLoS one*, 18(2), e0282080.

881 Meadow, A. M., Ferguson, D. B., Guido, Z., Horangic, A., Owen, G., & Wall, T. (2015). Moving
882 toward the deliberate coproduction of climate science knowledge. *Weather, Climate, and*
883 *Society*, 7(2), 179-191.

884 Miles, M. B., & Huberman, A. M. (1994). *Qualitative data analysis: An expanded sourcebook*. sage.

885 Miller, T. R., Baird, T. D., Littlefield, C. M., Kofinas, G., Chapin III, F. S., & Redman, C. L. (2008).
886 Epistemological pluralism: reorganizing interdisciplinary research. *Ecology and society*,
887 13(2).

888 Mrazek, P. J., & Haggerty, R. J. (1994). The knowledge exchange process: From research into practice.
889 In Reducing risks for mental disorders: Frontiers for preventive intervention research (Chapter
890 11). National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK236316/>

891 Needham, J. L., Beazley, K. F., & Papuga, V. P. (2020) Accessing Local Tacit Knowledge as a Means
892 of Knowledge Co-Production for Effective Wildlife Corridor Planning in the Chignecto
893 Isthmus, Canada. *Land*, 9(9), 332. <https://doi.org/10.3390/land9090332>

894 Nguyen, V. M., Bell, C., Berseth, V., Cvitanovic, C., Darwent, R., Falconer, M., Hutchen, J., Kapoor,
895 T., Klenk, N., & Young, N. (2021). Promises and pitfalls of digital knowledge exchange
896 resulting from the COVID-19 pandemic. *Socio-Ecological Practice Research*, 3(4), 427–439.

897 Nguyen, V. M., Young, N., & Cooke, S. J. (2017). A roadmap for knowledge exchange and
898 mobilization research in conservation and natural resource management. *Conservation
899 Biology*, 31(4), 789-798.

900 Nguyen, V. M., Young, N., Corriveau, M., Hinch, S. G., & Cooke, S. J. (2019). What is “usable”
901 knowledge? Perceived barriers for integrating new knowledge into management of an iconic
902 Canadian fishery. *Canadian Journal of Fisheries and Aquatic Sciences*, 76(3), 463-474.

903 Nonaka, I. (1991) The knowledge-creating company. *Harv. Bus. Rev.* 85, 162–170.

904 Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. *Organization science*, 5(1),
905 14-37. <https://doi.org/10.1287/orsc.5.1.14>.

906 Nonaka, I., & Takeuchi, H. (1995). *The knowledge-creating company: How Japanese companies
907 create the dynamics of innovation*. Oxford university press.

908 Nonaka, I., & Takeuchi, H. (2021). Humanizing strategy. *Long Range Planning*, 54(4), 102070.

909 Nonaka, I., Toyama, R., & Konno, N. (2000). SECI, Ba and leadership: a unified model of dynamic
910 knowledge creation. *Long Range Planning*, 33(1), 5-34.

911 Nowotny, H., Scott, P., & Gibbons, M. (2003). Introduction:'Mode 2'revisited: The new production of
912 knowledge. *Minerva*, 41(3), 179-194.

913 O'Brien, K. L., & Wolf, J. (2010). A values-based approach to vulnerability and adaptation to climate
914 change. *Wiley Interdisciplinary Reviews: Climate Change*, 1(2), 232-242.

915 Odii, B. C., Huang, Y., Des Bouvrie, N., & Harder, M. K. (2021). Cycles of meaning-making
916 crystallization in the WeValue InSitu process as clear contributions towards transformative
917 learning. *Journal of Cleaner Production*, 304, 127024.

918 Offermans, A., & Glasbergen, P. (2015). Boundary work in sustainability partnerships: An exploration
919 of the Round Table on Sustainable Palm Oil. *Environmental Science & Policy*, 50, 34-45.

920 Phillipson, J., Lowe, P., Proctor, A., & Ruto, E. (2012). Stakeholder engagement and knowledge
921 exchange in environmental research. *Journal of environmental management*, 95(1), 56-65.

922 Polanyi, M. (1962). Personal Knowledge: Towards a Post-Critical Philosophy. University of Chicago
923 Press.

924 Polanyi, M. (1968). The logic of tacit inference. *Philosophy*, 41(155), 1-18.

925 Pretty, J. (2011). Agricultural sustainability: concepts, principles and evidence. *Philosophical*
926 *Transactions of the Royal Society B: Biological Sciences*, 363(1491), 447-465.

927 Rantanen, H. & Kahila, M. (2009) The soft approach to local knowledge. *Journal of Environmental*
928 *Management*. 90, 1981–1990.

929 Rathwell, K., Armitage, D., & Berkes, F. (2015). Bridging knowledge systems to enhance governance
930 of environmental commons: a typology of settings. *International Journal of the Commons*,
931 9(2).

932 Raymond, C. M., Fazey, I., Reed, M. S., Stringer, L. C., Robinson, G. M., & Evely, A. C. (2010).
933 Integrating local and scientific knowledge for environmental management. *Journal of*
934 *environmental management*, 91(8), 1766-1777.

935 Reed, M. S., & Rudman, H. (2023). Re-thinking research impact: voice, context and power at the
936 interface of science, policy and practice. *Sustainability Science*, 18(2), 967-981.

937 Reed, M. S., Dougill, A. J., & Taylor, M. (2007). Integrating local and scientific knowledge for
938 adaptation to land degradation: Kalahari rangeland management options. *Land Degradation &*
939 *Development*, 18(3), 249-268.

940 Reed, M. S., Evely, A. C., Cundill, G., Fazey, I., Glass, J., Laing, A., Newig, J., Parrish, B., Prell, C., &
941 Raymond, C. (2010). What is social learning? *Ecology and society*, 15(4).

942 Reed, M. S., Stringer, L. C., Fazey, I., Evely, A. C., & Kruijsen, J. H. (2014). Five principles for the
943 practice of knowledge exchange in environmental management. *Journal of environmental*
944 *management*, 146, 337-345.

945 Reinecke, S. (2015). Knowledge brokerage designs and practices in four european climate services: A
946 role model for biodiversity policies? *Environmental Science & Policy*, 54, 513-521.

947 Rist, L., Shackleton, C., Gadams, L., Chapin, F.S., Gowda, C.M., Setty, S. et al. (2016) Ecological
948 knowledge among communities, managers and scientists: Bridging divergent perspectives to
949 improve forest management outcomes. *Environmental Management* (New York). 57(4):798–
950 813. doi: 10.1007/s00267-015-0647-1.

951 Robinson, C. J., & Wallington, T. J. (2012). Boundary work: engaging knowledge systems in co-
952 management of feral animals on Indigenous lands. *Ecology and society*, 17(2).

953 Roux, D. J., Kingsford, R. T., Cook, C. N., Carruthers, J., Dickson, K., & Hockings, M. (2019). The
954 case for embedding researchers in conservation agencies. *Conservation Biology*, 33(6), 1266-
955 1274.

956 Roux, D. J., Rogers, K. H., Biggs, H. C., Ashton, P. J., & Sergeant, A. (2006). Bridging the science–
957 management divide: moving from unidirectional knowledge transfer to knowledge interfacing
958 and sharing. *Ecology and society*, 11(1).

959 Rozance, M. A., Krosby, M., Meadow, A. M., Snover, A., Ferguson, D. B., & Owen, G. (2020).
960 Building capacity for societally engaged climate science by transforming science training.
961 *Environmental Research Letters*, 15(12), 125008.

962 Sanford, S., Schwartz, B., & Khan, Y. (2020). The role of tacit knowledge in communication and
963 decision-making during emerging public health incidents. *International Journal of Disaster
964 Risk Reduction*, 50, 101681

965 Schlüter, M., Caniglia, G., Orach, K., Bodin, Ö., Magliocca, N., Meyfroidt, P., & Reyers, B. (2022).
966 Why care about theories? Innovative ways of theorizing in sustainability science. *Current
967 Opinion in Environmental Sustainability*, 54, 101154.

968 Sethamo, O. A., Karlsson-Vinkhuyzen, S., & Harder, M. K. (2022). Role clarification for local
969 institutions: a missing link in multi-level adaptation planning? Insights from a multiple case
970 study in Botswana. *Climate and Development*, 14(4), 347-359.

971 Sethamo, O. A., Masika, R. J., & Harder, M. K. (2019). Understanding the role of crystallizing local
972 shared values in fostering effective community engagement in adaptation planning in
973 Botswana. *Climate and Development*, 12(5), 448-456.
974 <https://doi.org/10.1080/17565529.2019.1639488>

975 Stepanova, O., Polk, M., & Saldert, H. (2020). Understanding mechanisms of conflict resolution
976 beyond collaboration: an interdisciplinary typology of knowledge types and their integration
977 in practice. *Sustainability Science*, 15, 263-279.

978 Stern, M. J. (2018). *Social science theory for environmental sustainability: A practical guide*. Oxford
979 University Press.

980 Stern, M. J., Briske, D. D., & Meadow, A. M. (2020). Opening learning spaces to create actionable
981 knowledge for conservation. *Conservation Science and Practice*, 3(5), e378.

982 Svejvig, P. (2021). A Meta-theoretical framework for theory building in project management.
983 *International Journal of Project Management*, 39(8), 849-872.

984 Tschirhart, C., Mistry, J., Berardi, A., Bignante, E., Simpson, M., Haynes, L. et al. (2016) Learning
985 from one another: evaluating the impact of horizontal knowledge exchange for environmental
986 management and governance. *Ecology and Society*. 21(2):41. 10.5751/ES-08495-210241.

987 Van Kerkhoff, L. E., & Lebel, L. (2015). Coproductive capacities: rethinking science-governance
988 relations in a diverse world. *Ecology and society*, 20(1).

989 Van Kerkhoff, L., & Lebel, L. (2006). Linking knowledge and action for sustainable development.
990 *Annual Review Environmental Resource*, 31, 445-477.

991 Wallis, P. J., Bosomworth, K., Harwood, A., & Leith, P. (2017). Charting the emergence of a 'knowing
992 system' for climate change adaptation in Australian regional natural resource management.
993 *Geoforum*, 84, 42-50.

994 Walsh, J. C., Dicks, L. V., Raymond, C. M., & Sutherland, W. J. (2019). A typology of barriers and
995 enablers of scientific evidence use in conservation practice. *Journal of environmental
996 management*, 250, 109481.

997 Ward, V., Smith, S., House, A., & Hamer, S. (2012) Exploring knowledge exchange: A useful
998 framework for practice and policy. *Social Science & Medicine*, Volume 74, Issue 3, February
999 2012, Pages 297-304.

1000 Ward, V., House, A., Hamer, S., 2009. Knowledge brokering: the missing link in the evidence to action
1001 chain? *Evid. Policy* 5 (3), 267–279.

1002 Westwood, A. R., Hutchen, J., Kapoor, T., Klenk, K., Saturno, J., Antwi, E. K., Egunyu, F., Cortini, F.,
1003 Robertson, M., & Le Noble, S. (2023). A systematic map of knowledge exchange across the
1004 science-policy interface for forest science: How can we improve consistency and
1005 effectiveness? *Ecological Solutions and Evidence*, 4(1), e12214.

1006 World Bank. (1998). *World development report 1998/1999: Knowledge for development*. Washington,
1007 DC: World Bank.

1008 Wyborn, C. (2015). Connectivity conservation: Boundary objects, science narratives and the co-
1009 production of science and practice. *Environmental Science & Policy*, 51, 292-303.

1010 Yin, R. K. (1998). Case study research: Design and methods (2nd ed.). SAGE Publications.

1011 Young, N., Corriveau, M., Nguyen, V. M., Cooke, S. J., & Hinch, S. G. (2016a). How do potential
1012 knowledge users evaluate new claims about a contested resource? Problems of power and
1013 politics in knowledge exchange and mobilization. *Journal of environmental management*, 184,
1014 380-388.

1015 Young, N., Nguyen, V. M., Corriveau, M., Cooke, S. J., & Hinch, S. G. (2016b). Knowledge users'
1016 perspectives and advice on how to improve knowledge exchange and mobilization in the case
1017 of a co-managed fishery. *Environmental Science & Policy*, 66, 170-178.

1018 Zhang, J., Fedder, B., Wang, D., & Jennerjahn, T. C. (2022). A knowledge exchange framework to
1019 connect research, policy, and practice, developed through the example of the Chinese island of
1020 Hainan. *Environmental Science & Policy*, 136, 530-541.

1021

1022 **Supplementary Material**

1023 **Table S1. Data examples from feedback sessions (Day 1 and Day 2) and post-interview sessions**
1024 **indicating participants' capacity building to increase information usability.**

VDC Name	Sample quotations
VDC Mo	(Day 2 feedback session) Respondent 1: I believe we will uphold your teachings; we have learnt how to identify challenges in the village and how to address them and most importantly how to succeed. (Post-interview) Respondent: The (<i>WeValue InSitu</i>) trainings are important for the work of the VDC, since it clarifies the relationship between climate change and the work that the VDC does. When other committees also come to us to request for assistance on related matters we will be able to offer them informed advice. We are able to advise our workforce on how to protect themselves under different weather conditions since we have been experiencing heat waves. We can adjust our working hours in response to the current weather situation so that our people are not adversely affected.
VDC Ma	(Day 2 feedback session) Respondent 1: ... The activities that we developed during the VRA follow the foundation laid by the values framework. For example we have agreed that we are going to do a workshop for our farmers. This is the foundation that we are building on for climate action. The action items out of the workshop will be put into practice which will help us reach our vision as the community.
VDC Sh	(Day 2 feedback session) Respondent 2: Yesterday we were taking about issues related to how we can develop our village. (...) . Comparing to today, we brought in the issue of climate change and what our village has that can be useful to addressing its impacts on the community. When you look at these two days, they are related, even though we were talking about climate change today we were still addressing village development in relation to fishing and the improvement of agriculture. Attending yesterday's event I can say built my confidence to answer questions related to climate change even though it is not my field. I was able to relate to how it can be addressed through planned development in my village. Respondent 5: We talked about caring for the environment and that we wish for everyone to have a responsibility towards the environment. Today we addressed issues of pollution and how this can affect the environment and our health. Now that we have made this connection, the way that we look at this activity of burning charcoal at the poultry farms has changed, it calls for us as the VDC to take action because what we learnt yesterday and today has opened our eyes to this issue.
VDC Ta	(Day 1 feedback session) Respondent 1: <i>WeValue InSitu</i> clarified my role and the how I should execute my plans as well as what is important for the community. Respondent 2: <i>WeValue InSitu</i> clarified our responsibility, we should be ready to engage in any issue that might be as a result of climate change.

1025

1026 **Table S2. Sample quotations from VRA process, Day 2 feedback session, and post-interview**
1027 **session showing participants referring to the shared values frameworks they developed and**
1028 **indicating the frameworks being applied as boundary objects to assist their development of the**
1029 **VR Assessments.**

VDC Name	Sample quotations
VDC Mo	<p>(When discussing issues, livelihoods activities and solutions and barriers related to vulnerabilities identified and solution for farmers)</p> <p>Respondent 1: VDC will provide support to villagers to access these services which are available through the local government. We want our people to be self-sustaining.</p> <p>Respondent 2: This was mentioned yesterday in our discussions that it is important for the VDC that people can do things for themselves, we help them become self-sustaining.</p> <p>(Day 2 feedback session)</p> <p>Respondent 2: This is important for us as it (the framework) advises on how development planning should be carried out. ... It is basically our guidelines.</p> <p>Respondent 1: It broadened my mind, the ability to establish the important things for the VDC and the community. How work should be built from the foundation, how we work and the vision brought clarity to the importance of planning. It shows the VDC how to develop a way forward.</p> <p>Respondent 2: ... I do not only understand that I should work for the village but I also understand how I should do this work. I am moving from waiting for things to reach the VDC but now I am going out there to make things happen.</p> <p>Respondent 3: I usually just talk about climate change casually without knowing really how it relates to our work. But now I realized the entry points for this discussion and how you should build on the discussion.</p> <p>(Post-interview)</p> <p>Respondent: The framework will be adequate to represent our commitments and desires.</p>
VDC Ma	<p>(Day 2 feedback session)</p> <p>Respondent 1: There is a connection. The activities that we developed during the VRA follow the foundation laid by the Values Framework.</p> <p>Respondent 3: I can say the two trainings when they combine, help you build up the essence of a human being. Starting from the foundation, respecting a human being and helping them decide the paths they want to follow in their life. Today we are addressing people's livelihoods but yesterday we were talking about the dignity of a human being. ... It helps you clarify the necessary steps and activities to attain our vision, that is, how people can improve their livelihoods, farming and backyard gardens without overly relying on the government.</p> <p>(Post-interview)</p> <p>Respondent: The framework was the best. The background, how we work and vision sets a clear description of how work should be done in the village, that is how work should follow.</p> <p>Respondent: The framework shows us where to start in building up projects,</p>

what actions needs to be taken to achieve our vision. It will even help those who come after us to understand the direction the village wants to take. It gives the VDC direction.

VDC Sh **(Day 2 feedback session)**

Respondent 6: The value statements booklet (shared values framework) is useful as I was able to refer to it time and again to clarify my thoughts.

(Post-interview)

Respondent: This (*WeValue InSitu*) framework clarified the VDC's role in the village as well as how community consultation should be undertaken.

VDC Ta **(Day 2 feedback session)**

Respondent 1: The structure that you used yesterday in the training has clarified our understanding of how we do work. The training is similar to how the VDC is supposed to conduct its work. The foundation which involves rules and regulations, how we work to ultimately reach our goals showed me the importance of planning from the bottom going up.

(When discussing issues, livelihoods activities and solutions and barriers related to vulnerabilities identified)

Respondent 1: The foundation we laid yesterday clarifies for us the most important steps in our work. For example to reach vulnerable people in the society and enroll them for government programmes there are guidelines that the government has set. We have to ensure that these guidelines are followed so that no one is left behind.

Respondent 2: We agreed yesterday as the VDC that our job is to assist all the people in our village and all the points that we have made today are related to supporting and developing people. While this is important we need to know where to start, so we develop first our roadmap to help us achieve our goal. We start by putting through our requests at the ministry of local government.

...

Respondent 1: I think what you (facilitator) are teaching us is that when people are going through challenges such as flooding, we should all be concerned and go and offer assistance. This is not what is happening currently. People feel like they are being ridiculed when you go to their house to offer help.

Facilitator: Which statement is aligned to what you just said?

Respondent 1: We said we help each other in our times of need. I am not trying to take us back but I hope we can change our mindset to live these statements.

Respondent 2: I think that is something that we need to share with the community that when we come to their houses after disasters it is because we want to help not to ridicule them.

Respondent 3: I like that we are clarifying these things because sometimes when I raise issues especially about things that we are not supposed to be doing people think that I am radical.

1033 **Table S3. Sample quotations from VRA process, Day 2 feedback session, and post-interview**
 1034 **session confirming the integration of two kinds of explicit knowledge.**

VDC Name	Sample quotations
VDC Mo	(Day 2 feedback session)
	<p>Respondent 1: I think the VRA is a continuation of what we did with the WV session. The most important thing is to be able to make a connection between the things that are important to us and the challenges of climate change that we are discussing today.</p> <p>Respondent 3: This training is important to me because it helps us clarify our starting point, not just the starting point but the things that bring us together. It is a waste of time to be thinking about projects but not knowing the preliminary steps needed to make your projects a reality. We are one team, when one of us brings an idea we must all support it and if it is a good idea make sure it reaches where it is supposed to for action to be taken.</p> <p>...</p> <p>Respondent 1: I will repeat myself that these teachings broadened our thinking. I feel confident going to the orientation with the district council and I will be able to represent my village well. I believe we will also be able to challenge and interact with our trainers in a productive way. I will be able to support my ideas and thinking.</p>
VDC Ma	(When mapping out relevant stakeholders and how to benefit from their expertise...)
	<p>Respondent 3: Some of the stakeholders here like the ministry of agriculture and the social and community development department align well with Statement 27 People understand the value of the environment & We are there for each other during their times of need.</p>
VDC Sh	(When discussing issues, livelihoods activities and solutions and barriers related to vulnerabilities identified and solution for irrigation agriculture)
	<p>Respondent 1: This (solution) is about building the capacity of individuals so that they can do things for themselves and become self-sufficient.</p> <p>Respondent 2: This (solution) is our vision, but if we are determined, we can achieve it. For example if you want to build a small dam in your farm, you call on the community through “letsema” to assist you. This usually does not take a longtime. You provide food for people.</p>
VDC Ta	(Day 2 feedback session)
	<p>Respondent 1: Yesterday (<i>WeValue InSitu</i>) we were talking about the building blocks of development in the village. Today (VRA session) you can see that our interventions are closely related to our foundations (of the framework). ... The projects that we came up with today, build on our vision (of the framework).</p> <p>Respondent 2: ... Everything that we discussed from yesterday to today is about people's livelihoods and how the VDC can positively impact them. There has not been a discussion that does not involve people's livelihoods.</p> <p>Respondent 1: I think what we have been doing as the VDC is that we have been blindly receiving direction from the district council and we forgot about what our people really want. After this training I think our thinking has been widened. If we can be supported with the projects that we have suggested in response to climate change we can change a lot of people's lives. We can solve the unemployment issue. This is what I</p>

believe.

Respondent 2: ... the way we came up with our projects is that we also considered our contribution to the project and what we can possibly achieve. We looked within ourselves. I think this kind of planning is useful because it makes you aware of your capabilities.
